0733 892665 info@prosilas.com
Digital Scalable Production with 3D Printing

Digital Scalable Production with 3D Printing

Digital Scalability in Production: A Guide for companies towards sustainable growth

In the ever-evolving landscape of the manufacturing sector, the ability to adapt and grow flexibly has become a key factor for success.

In this scenario, Digital Scalable Production emerges as a winning strategy for companies leveraging 3D printing services, offering numerous advantages in terms of competitiveness and sustainability

What is scalable manufacturing?

Scalable manufacturing is the ability of a company to increase or decrease production based on market needs, without compromising efficiency, quality or profitability.

In other words, it is a flexible and adaptable production system that allows us to respond promptly to fluctuations in demand.

Vanna Menco, CEO of Prosilas, underscores the importance of this approach:

“Scalable production is not just a matter of economic efficiency, but represents a true paradigm shift that enables companies to adapt to demand fluctuations and respond quickly to market needs.”

Why Scalable Production Is Important for Companies?

3D printing is particularly suited to a scalable production model, offering numerous advantages to companies:

  • Flexibility and adaptability: 3D printing allows for rapid transition from prototype to mass production and enables the modulation of production according to market needs without drastically altering production processes. This is crucial for companies operating in constantly evolving markets that need to promptly respond to demand fluctuations.
  • Efficiency and profitability: 3D printing optimizes resource utilization, reduces waste, and accelerates delivery times. This results in increased efficiency and profitability for companies.
  • Sustainability: 3D printing contributes to a more eco-friendly production model by reducing material usage and environmental impact.

Investing in the Future with 3D Printing

Embracing a scalable production approach means investing in the future of one’s company. Companies that leverage this model will be able to:

  • Stay competitive: The flexibility and adaptability of scalable production allow companies to remain competitive in an ever-changing market.
  • Reduce risks: Waste reduction and resource optimization minimize financial risks and improve profitability.
  • Invest in development: Scalable production frees up resources that can be invested in the development of new products and services.
  • Promote sustainability: 3D printing contributes to a more environmentally friendly production model, reducing the company’s environmental impact.
Certifications: The journey towards excellence and responsibility

Certifications: The journey towards excellence and responsibility

Prosilas: High-Quality Standards and Corporate Responsibility.

Certifying our company is not just a formal act but a tangible demonstration of our commitment to high-quality standards and corporate responsibility.

Certifications such as ISO 9001 and ISO 14001 have become the cornerstones of our approach to daily work, defining our way of operating and inspiring a culture of continuous improvement.

ISO 9001: A fundamental framework for operational excellence

ISO 9001 was the first certification obtained by Prosilas, serving as the foundation upon which we built our quality management system.

Beyond mere compliance, this certification has guided us in implementing procedures that standardize every aspect of our workflow.

Every member of our team is involved and trained to handle work according to stringent guidelines, ensuring consistent quality and fueling our ongoing pursuit of improvement.

ISO 14001: Active Commitment to a Sustainable Future

Our commitment to a healthy and sustainable environment is embodied by our ISO 14001 certification.

Beyond compliance with environmental regulations, we challenge ourselves to continuously measure and improve our environmental impact. From safety to consumption, emissions to noise, every aspect is carefully assessed and enhanced.

This certification is not just a requirement but a tangible demonstration of our dedication to a more sustainable future, aligning with the expectations of our environmentally-conscious customers.

Prototal and the Environment

The attainment of these certifications aligns with Prototal Industries‘ commitment to environmental sustainability.

Our promise by 2030 is to provide cutting-edge, future-oriented solutions that generate positive impacts on customers, society, and the environment, aiming to establish a high industrial standard.

Through innovation, we will pursue the goal of fully integrating into a 100% circular value chain. We believe that sustainability is not only a corporate responsibility but a crucial element for the long-term success of our business.

Towards New Horizons: IATF and TISAX

Looking to the future, we are working towards obtaining IATF (International Automotive Task Force) and TISAX (Trusted Information Security Assessment Exchange) certifications by 2024, thus entering the realm of global regulations in the automotive industry.

IATF standards represent global procedures and regulations required by the automotive industry for its supply chain.

This investment not only ensures compliance as suppliers but empowers the entire organization by transferring advanced skills.

Rigorous staff training and the adaptation of the facility workplaces are essential requirements, leading to a transformation that extends beyond the automotive sector and can be applied to other industrial fields.

Beyond Certifications, Toward a Future of Excellence

Each certification is a crucial step in our corporate journey. Certifying our company is not just stamping a seal on a document; it is our commitment to building an organization that is excellent, conscious, and dedicated to continuous improvement.

We are ready to face the challenges of the modern world with responsibility, awareness, and the determination to pursue excellence in every aspect of our work.

Innovation in Soccer: Study and Implementation of Protective Masks through 3D Printing

Innovation in Soccer: Study and Implementation of Protective Masks through 3D Printing

3D Printing in the Development of Sports Protective Devices

Simone Gallozzi Demonstrates Its Potential in His Thesis

Sport and 3D Print

The world of sports is constantly seeking innovative solutions to enhance athletes’ performance, reduce the risk of injuries, and facilitate recovery.

3D printing, in particular, is emerging as an increasingly popular technology, enabling the production of customizable protective devices such as prosthetics, running shoe soles, helmets, and other safety gear – as exemplified by our Case Study on Lube Volley.

In particular, Simone Gallozzi’s thesis demonstrates the feasibility and details the workflow of a 3D printing application in the field of soccer

Simone Gallozzi protective mask in PA 603 CF

 Lube Volley Athletes

The candidate, in his thesis titled ‘ADDITIVE MANUFACTURING IN THE SPORTS WORLD – Analysis and Production of Facial Protective Masks in Soccer,’ under the guidance of Professor Eleonora Santecchia, conducted a thorough analysis on the application of 3D printing in sports.

His main objective was to explore the production of protective devices through 3D printing, both for the maxillofacial area and other parts of athletes’ bodies.”

Case Study: Maxillofacial Protective Mask

The heart of the thesis is represented by the Case Study, in which Gallozzi,student
of Mechanical Engineering at the Università Politecnica delle Marche, collaborated with our company in the development of a maxillofacial protective mask designed for soccer players.

Material and Printing Technology Selection:

The first step involved choosing the most suitable material and printing technology for the application.

In this case, the chosen material is PA603CF, a composite of PA2200 loaded with carbon fiber.

Its ability to provide high-performance, coupled with its resistance to the stresses typical of the soccer environment, makes it ideal for the production of advanced protective devices.

The selected printing technology is SLS (Selective Laser Sintering), enabling the precise and durable printing of PA603CF parts.

PA603CF materiale caricato con fibra di carbonio per la stampa 3D

PA 603 CF – Carbon filled Polyamide

Exemple of specimens for tensile and flexural tests

Design and Production Workflow

1 – Modeling and Printing of Specimens for Tensile and Flexural Testing:

Prior to the production of the mask, validation tests of the material were conducted, in accordance with UNI EN ISO 527-2, 1A, and ISO 178 standards.

The specimens modeled using Siemens NX passed tensile and flexural tests, confirming the suitability of PA603CF for the maxillofacial protective mask.

2 -Face scanning:

The next phase involves the 3D scanning of the subject’s face for whom the mask has been modeled.

This scanning is performed using a 3D scanner, which captures the shape and size data of the face.

The acquired data is then used to create a 3D model of the mask that perfectly fits the subject’s face using reverse engineering techniques

Scanning phases

Mask 3D model

3 – 3D Modeling:

The 3D model of the mask is created using Siemens NX, a 3D modeling software. The model is designed to protect the most vulnerable areas of the face, such as the cheekbone, jaw, and nose.

Consideration for comfort and lightness was crucial, along with the desire to preserve the athlete’s peripheral field of vision to the maximum extent possible.

4 -Prima realizzazione del prototipo

Prima di procedere con la maschera finale, è stato creato un prototipo in VeroWhitePlus con la stampante 3D Objet30 di Stratasys, che sfrutta la tecnologia di material jetting.

Questo passo preliminare ha consentito di valutare la bontà del design prima di passare alla fase successiva.

First protoype of the mask

Last phase, finally the mask is printed

5 –3D Printing with SLS Technology and PA603CF Material

Once the success of the prototype was confirmed, the 3D printing of the final protective mask in PA603CF was initiated using our company’s SLS 3D printers.

This phase represents the culmination of the thesis work, with the chosen material selected for its intrinsic properties of rigidity, strength, hardness, and lightness.

Post-Printing Phases: Safety and Customization

Simone Gallozzi theoretically discussed post-printing phases, including the need to internally coat the mask with a soft material for skin contact. He proposed the use of strategic supports to avoid contact with the traumatized area.

Surface treatments and aesthetic customizations are considered to enhance the appearance of the mask, completing the process with the addition of elastic bands through designated holes.

 

Simone Gallozzi’s work represents a very interesting application of Additive Manufacturing in the world of sports, highlighting how collaboration between academia and industry can open new perspectives for innovation.

Prosilas: Success at the Best Value Award Marche 2023

Prosilas: Success at the Best Value Award Marche 2023

Work Ethic and Sustainable Growth Recognized in the ‘Lupo’ Category

The 6th Best Value Award Marche 2023, organized by Imprenditore Smart and held at the Confindustria Ancona headquarters, celebrated the excellence of companies in the Marche region in sustainable corporate value creation.

Among the awardees, Prosilas stands out, securing the fourth position in the ‘Lupo’ category, acknowledged for its consistent growth over five years, highlighting remarkable work ethic and adaptability to challenges

The Award

The Imprenditore Smart team recently held the 6th edition of the Best Value Award Marche 2023 at the Confindustria Ancona headquarters, an initiative expanded regionally to recognize the top 45 companies in corporate value creation.

Since 2018, a comprehensive research effort has been underway to identify and reward companies that have excelled in creating and increasing their corporate value in a healthy and financially sustainable manner.

The award is divided into four categories based on the company’s valuation range for a fair comparison: Lion (valuation over 100 million euros), Tiger (valuation between 50 and 100 million euros), Panther (valuation between 10 and 50 million euros), and Cheetah (between 5 and 10 million euros). In this edition, Prosilas achieved the fourth position in the ‘Lupo’ category.

Introduced in 2021, the ‘Lupo’ category specifically recognizes companies that have consistently increased their value over a five-year period.

Prosilas: A Team of Wolves

Founded on more than just economic value, Prosilas focuses on the team’s work ethic and its ability to adapt and face daily challenges. The Prosilas team has been recognized and rewarded for its proactive attitude and strong collaborative spirit in the category symbolized by the animal representing great strength and adaptability to change – the wolf.

The award has brought immense satisfaction and joy to the entire staff, interpreting this significant achievement as positive feedback for their daily efforts and confirmation of being on the right path, ensuring the well-being of the company and its employees. The award will undoubtedly serve as an additional motivation to preserve the progress made and consistently strive to operate in a peaceful and fulfilling environment.

From idea to prototype in 4 months, Bimota streamlines times and costs for its motorcycles with Prosilas’ 3D printing.

From idea to prototype in 4 months, Bimota streamlines times and costs for its motorcycles with Prosilas’ 3D printing.

Bimota + Prosilas Case History

Thanks to Prosilas’ additive manufacturing, the Rimini-based company develops new high-performance models within a few months. This cuts down both time and costs, resulting in absolute excellence on the road and the track.

Bimota is the historic motorcycle manufacturer, founded in Rimini in 1973. Over the years, the company has undergone various changes and evolutions, leading to its revival through the acquisition by Kawasaki Heavy Industries: 49.9% in 2019, eventually increasing to 100% at the beginning of 2023. Now, Bimota can rely on Kawasaki’s technology supply, including engines, and its sales network.

We started designing the new Tesi H2 right away: carbon bodywork and a supercharged, high-performance engine with the highest category performance, boasting 230 horsepower for the Euro 4 version and 200 for the Euro 5,” confirms Pierluigi Marconi, Bimota’s technical director. “However, we soon encountered an unforeseen obstacle – the Covid pandemic and the need to work from home. It turned out to be an opportunity to change our approach and design the entire motorcycle in 3D, opening up a range of interesting possibilities.”

Pierluigi Marconi , Bimota Tecnical Director. Tesi H2 and KB4

In the Bimota workshop, the prototype of the Tesi H2.

From 12 to 4 months for the prototype.

Having the 3D model of each part of the motorcycle is undoubtedly advantageous because it allows for virtual testing and evaluating the actual correctness of certain decisions made by the designer on the screen.

However, “there still comes a time when you have to touch the pieces, assemble them, and understand how they behave to determine if the choices made are correct,” adds Marconi. “In the past, it was necessary to manually create clay prototypes, from which rapid molds for fiberglass had to be constructed. A costly and laborious process, whose results were not always precise.

Now, with the 3D files available, we have the opportunity to have them printed through rapid prototyping services: this is how we got to know Prosilas.”

From the idea to the first exhibition mockups, it is possible to reduce the timeline from approximately 12 to 4 months, with a clear reduction in associated costs. Once the validity of the project is confirmed, the production of equipment begins. Marconi continues, ‘The development proceeds very quickly, the fine-tuning of components takes a few weeks, and a 3D-printed prototype is obtained from the file within a couple of days.

We check if the geometries and modifications are correct or if further adjustments are needed. In this case, it is sufficient to send the file back to Prosilas to obtain the new printed piece for testing. Typically, with a couple of iterations, we achieve the best possible result. Previously, mold adjustments were necessary, a very costly activity: at best, it required some modifications, and sometimes even a complete remake.”

The Bimota staff with the prototype of the Tesi H2

Track testing with the Tesi H2

Prosilas’ 3D printing also works on the track.

For a company like Bimota, the result is evident in on-track testing:When you book a test day and organize the trip for some engineers from Japan,” explains Marconi, “you cannot afford a component delivery failure. A test day can cost us tens of thousands of euros, and today, no one is willing to squander such an investment.”

Therefore, it is necessary to find a partner capable of producing even the most complex components, which are challenging to develop solely based on fluid dynamics simulation. The multiple variables at play, such as air temperature or flow direction, make it more practical to design a high-quality 3D file for practical testing on the road

And this is where Prosilas’ rapid prototyping proves reliable and valuable. “Once we designed some body parts and ducts, we obtained the printed pieces in a day and tested them,” explains Marconi. “The use of Nylon loaded with glass fiber (PA12 GF) is ideal in terms of mechanical strength and resistance to high temperatures. Some parts are indeed very close to the exhaust system or radiators and need to endure for a long time, providing us with useful data to understand if we are on the right track. Additionally, it is a material that does not deform, a very useful characteristic when used for the coupling of body parts.”

Tesi H2 marked the beginning of a path entirely dedicated to 3D for Bimota. With the KB4, featuring an appealing Vintage Inspired appearance, Prosilas’ additive manufacturing allowed, for example, the creation of a complex air duct system. TERA, the latest addition from the Rimini manufacturer, stood out at the last edition of EICMA – Milan, thanks to two exclusive kits, which will soon be updated with additional aerodynamic appendages.

Frontal view of Tesi H2 and KB4

Bimota Tera

The respect for established timelines

For Bimota, the initial experience with 3D printing was not immediately positive. “We had worked with suppliers who sent us deformed components, out of tolerance, some even delaminated,” admits Pierluigi Marconi. ‘So the benefits of rapid prototyping were nullified because if you have to intervene on a piece and it doesn’t perform as expected in tests, you can’t know if the fault lies with the design, the material, or the printing. Also, for this reason, in my opinion, the cost factor is secondary: spending 10% less but having parts that do not meet our expectations means wasting money. The same goes for delivery times: if I cannot rely on a supplier, it means it’s the wrong one. When we met the Prosilas staff, on the other hand, we immediately noticed a great attention to our needs and the challenges of our work.”

Another critical detail is related to timelines: while prototyping allows for a reduction in development times, it also demands that the supply chain be absolutely reliable. Another challenge that Bimota and Prosilas have overcome together. Prosilas is the most accurate and punctual suppliers we have ever had,” concludes Marconi. We provide them with the file, and we get a delivery timeline that is crucial for us, as we base subsequent activities on it.”

Render 3D Bimota KB4

Pierluigi Marconi e his staff

A future full of challenges for Bimota

Now that Bimota designs new models in 3D and leverages the additive technology of Prosilas, both the time and cost of the process have undergone a significant reduction. The company remains in constant search of new ideas and solutions to make further advancements in every aspect: from the performance of their motorcycles to the reduction of development budgets, always keeping an eye on overall timelines.

The expertise and guidance from Prosilas experts can once again prove to be the winning strategy to achieve desired results and solidify Bimota’s success in the market

How vapor smoothing improves the quality of 3D-printed parts

How vapor smoothing improves the quality of 3D-printed parts

Vapor Smoothing in 3D Printing: Optimizing the Performance of Printed Parts

In the world of 3D printing, the quest for methods to enhance the performance and aesthetic appearance of produced parts is a constant endeavor.

Among the various post-production techniques available, vapor smoothing stands out for its effectiveness in imparting new properties and significant improvements to printed parts.

How does the vapor smoothing process work in SLS 3D printing?

The process takes place within a processing chamber, where a series of chemical agents, selected based on the material of the part, act on the 3D-printed surfaces, making them uniform and smooth to the touch.

This system can simultaneously treat hundreds of parts, ensuring a consistent treatment for all products within the working chamber.

The potential

[dsm_before_after_image before_src=”https://www.prosilas.com/wp-content/uploads/2023/03/IMG_2386.png” after_src=”https://www.prosilas.com/wp-content/uploads/2023/03/IMG_2376.png” _builder_version=”4.24.0″ _module_preset=”default” width=”71%” module_alignment=”center” global_colors_info=”{}” theme_builder_area=”post_content”][/dsm_before_after_image]

Vapor smoothing is a post-production process primarily applied to 3D-printed parts to enhance their surface finish, strength, and aesthetic appearance.

This technique offers several advantages, including:

  • Surface Finish Improvement: Surfaces of 3D-printed parts can exhibit irregularities and porosity due to the 3D printing process. Vapor smoothing acts to eliminate these imperfections, providing surfaces with a smooth and uniform finish.
  • Glossy Surfaces: One of the most appreciated features of chemical smoothing is its ability to give parts a glossy and shiny finish. This not only enhances the aesthetic appearance of the parts but also makes them more appealing for applications where appearance matters.
  • Porosity Removal: Surface porosities can compromise the strength and durability of 3D-printed parts. Vapor smoothing can reduce or completely eliminate these porosities, thereby increasing the strength and lifespan of the parts.
  • Improved Strength: Through the application of specific chemical agents, chemical smoothing can enhance the resistance of printed parts to liquids, chemicals, and mechanical stress. This makes them more suitable for a wide range of industrial and commercial applications.
  • Ease of Cleaning and Maintenance: The smooth and uniform surfaces obtained through vapor smoothing simplify the cleaning and maintenance operations of printed parts, reducing the time and costs associated with these activities.

Applications and Advantages

 

Vapor smoothing finds application in a variety of sectors, including aerospace, automotive, medical, and consumer industries. Parts printed through 3D printing technology can undergo this process to achieve optimal performance and a high-quality appearance.

This treatment represents a crucial step in the post-production process of 3D-printed parts. Thanks to its numerous advantages, this technique enables the production of parts with optimal performance, impeccable surface finishes, and increased durability.

For anyone involved in the production of 3D-printed parts, chemical smoothing emerges as an option to consider in ensuring the success of their projects and meeting the needs of clients.